Оценка долговечности уторных узлов вертикальных цилиндрических резервуаров в процессе эксплуатации
Г.Г. Васильев, А.А. Катанов, Е.Е. Семин
(Научно-технический и производственный «Журнал нефтегазового строительства»)
В Российской Федерации создана мощная система магистрального трубопроводного транспорта нефти, включающая в себя более 1 тыс. вертикальных стальных резервуаров. Большая их часть построена в 1980-е годы и к настоящему времени исчерпала свой проектный ресурс, составляющий 30 лет.
Эксплуатирующие организации регулярно проводят диагностику и ремонт резервуаров, и для них чрезвычайно актуальными являются продление срока эксплуатации и снижение объемов ремонта.
При диагностике наибольшее внимание уделяется элементам конструкций резервуара, работающим в условиях сложного напряженно-деформированного состояния при высоком уровне напряжений. Одним из наиболее ответственных элементов резервуара является соединение между стенкой и днищем – уторный узел.
Известно, что наибольшую концентрацию напряжений вызывают дефекты сварных соединений – подрезы, которые можно рассматривать как трещиноподобные дефекты. Они являются определяющими при прогнозировании сроков безопасной эксплуатации резервуаров. Это также подтверждается результатами диагностики, при которой обнаруживаются трещины, развившиеся от подрезов в зоне сопряжения уторного шва и окрайки.
Учитывая современную практику применения высококачественных антикоррозионных покрытий на основе эпоксидных смол для защиты внутренней поверхности резервуаров, долговечность уторных узлов может определяться по критерию начала роста трещины или по критерию разрушения в процессе циклического нагружения.
Оценка долговечности уторных узлов выполняется в следующей последовательности:
-
- – определение напряженно- деформированного состояния (НДС) в зоне дефекта;
- – расчет числа циклов до начала образования трещины;
- – расчет числа циклов до разрушения уторного узла.
Для определения НДС в уторном узле реальной геометрической формы был выбран метод конечных элементов. Для построения моделей и решения задачи использовался вычислительный комплекс ANSYS. В целях сокращения времени расчета были разработаны два типа конечно-элементных моделей.
Первая модель выбиралась из условия, что действие краевого эффекта от днища затухает в пределах первого пояса и включает первый пояс стенки резервуара, окрайку днища, уторный шов без дефектов и упругое основание резервуара. Нагрузки задаются от гидростатического давления и веса конструкций.
По результатам расчета установлено, что 95 % максимального значения напряжений составляет нагрузка от изгиба, возникающая в результате стесненности деформаций.
Вторая модель включает участки первого пояса стенки и окрайки длиной по 200 мм и уторный сварной шов с различными значениями выпуклости и вогнутости. Нагрузка задавалась в виде двух сил, приложенных к концам модели таким образом, что напряжения в зоне уторного шва отличались от первой модели не более чем на 2 %. Сгущение сетки производилось к пересечению сварного шва и окрайки. Все конструкции резервуара моделировались с использованием плоскостных элементов типа shell. Вычисление напряжений и деформаций производилось в предположении упругопластического тела. Модель использовалась для определения фактических напряжений в образце без дефектов сварного соединения и в образце с подрезами разной глубины. Было выполнено более 250 расчетов.
Напряжения в зоне подреза в окрайке, выполненной из стали 09Г2С варьируются от 285 МПа для соединения с вогнутостью 3–4 мм до 500 МПа для сварных соединений с подрезом глубиной 3 мм. Для стали 16Г2АФ аналогичные напряжения составляют от 346 МПа до 560 МПа соответственно.
По результатам расчетов второй модели установлено, что оптимальной формой сварного соединения является шов, вогнутый вовнутрь. Величина вогнутости уторного шва должна составлять 3–4 мм, в этом случае гарантируется отсутствие развивающихся пластических деформаций в зоне уторного сварного соединения в процессе эксплуатации.
Поэтому при проектировании и строительстве с целью снижения напряжений рекомендуется выполнять внутренний шов вогнутым на 3–4 мм.
Исследование долговечности уторных узлов выполнено по двум предельным состояниям: начало роста трещины и начало разрушения соединения.
Расчет ресурса по критерию начала роста трещины выполнялся по формуле Нейберга.
Анализ результатов расчета показывает, что инкубационный период роста трещин для уторных сварных швов с вогнутостью от 0,5 мм до 5 мм составляет 17 500 и более циклов, что соответствует сроку эксплуатации 50 лет при цикличности 350 циклов в год. Безопасная работа уторного узла резервуара с подрезами до 0,3 мм обеспечена на весь период эксплуатации для швов с оптимальными параметрами вогнутости, составляющей 3–4 мм.
Поэтому при проектировании и строительстве с целью безопасной эксплуатации уторного соединения без появления трещин рекомендуется устанавливать критерий отбраковки по глубине подреза 0,3 мм.
Исследование ресурса уторного узла по критерию начала разрушения выполнено по методике, использованной в нормативных документах «Транснефти» и «Газпрома». Для выполнения расчета разработана программа, позволяющая моделировать рост трещины до наступления разрушения уторного сварного соединения путем ее подращивания в цикле.
Алгоритм программы включает:
-
-
- – определение деформированного состояния вблизи вершины дефекта;
- – проверку достижения деформаций в зоне дефекта предельных значений;
- – определение НДС вблизи трещины, растущей от вершины дефекта;
- – проверку достижения деформаций предельных значений в зоне трещины;
- – увеличение размера трещины с учетом подрастания в цикле.
-
Анализ результатов расчетов показывает, что с увеличением вогнутости до
4 мм и уменьшением глубины дефекта увеличивается срок эксплуатации уторных узлов резервуаров. При равной глубине подреза срок эксплуатации уторных узлов различной формы отличается в 8–12 раз. Максимально допустимый подрез для эксплуатации уторного узла в течение 10 лет составляет 2 мм.
Для подтверждения результатов, полученных расчетным путем, выполнено экспериментальное определение долговечности уторных узлов с подрезом, выполненных из сталей 09Г2С и 16Г2АФ. Форма и условия нагружения образцов соответствуют второй расчетной модели.
Определение числа циклов до разрушения образцов производилось по результатам испытаний 18 образцов с подрезами различной глубины на испытательной машине Instron. Пропилы в образцах, имитирующие подрезы, располагались в околошовной зоне. Максимальное число циклов нагружения составляет 35 000. Для создания расчетных напряжений образцы закреплялись с использованием торцевых планок в зажимах машины и растягивались с постоянным усилием.
Анализ результатов экспериментов показывает, что для уторных соединений из стали 09Г2С сходимость результатов эксперимента и расчета с учетом остаточных сварочных напряжений укладывается в 14–18 %, для стали 16Г2АФ сходимость результатов эксперимента и расчета укладывается в 7–8%.
Выводы
1. На основании исследований НДС разработаны рекомендации по оптимизации формы уторного узла по критерию минимальных эксплуатационных напряжений. Установлено, что минимальные значения напряжений возникают в уторном шве с величиной вогнутости 3–4 мм.
2. Исследования ресурса уторных соединений показали, что при строительстве резервуаров глубина максимально допустимого подреза может составлять 0,3 мм, а при диагностировании резервуара могут допускаться для дальнейшей эксплуатации уторные узлы с подрезами глубиной до 2 мм.
3. Предложена комплексная методика расчета ресурса уторных соединений, основанная на полученных функциональных зависимостях НДС в вершине дефекта и применении апробированных методик, определяющих процесс развития трещины. Данная методика использована при разработке РД «Руководство по оценке технического состояния резервуаров».
4. Экспериментальными исследованиями натурных образцов подтверждены полученные расчетные зависимости.